Bindley Residence A Net Zero Deep Energy Retrofit on Squam Lake NH

Before...

Deep Energy Retrofits - Marc Rosenbaum, PE

Team

• Home Owner

Jane Bindley

• Design/Build

Ben Southworth

www.garlandmill.com

• Energy Consultant

Marc Rosenbaum, PE

www.energysmiths.com

• Engineer - James Petersen, PE

www.petersenengineering.com

The owner was inspired by a session on Zero Net Energy Homes at Building Energy and wanted her renovation to be ZNE. However, Squam Lake is on the north side...and a steep hillside with trees is on the south, with Route 3 beyond. So the envelope is extraordinary, to compensate.

This is a second home with intermittent occupancy. When occupied it can be occupied by large groups. The first year the house was kept at comfort temperature to get data.

Sub-metering has enabled study of energy consumption by end use.

Winter view to the lake

Jane and Ben's shared vision

- Shoot for carbon neutral
- Aim for net zero to reduce carbon emissions
- Provide lots of natural light and ventilation
- Preserve and help to improve lake's water quality
- Gain universal access for house (and lake too, if possible)
- Use local, sustainably produced, and non-toxic products wherever possible
- Recycle and salvage as much as we can

Marc making sure Ben delivers on vision

Apparently Patagonia was a sponsor...

Deep Energy Retrofits - Marc Rosenbaum, PE

Energy Model

	A	В	C	D	E I	F G	H I	J
1	Heat Loss Calculator	This is a simple	spreadsheet calcu	lator to estimate annual energy use for heating for a house -	not a substitute for I	hourly simulation		
2	User inputs go into cells with yellow fill							
3				Design Temperature Difference	80			
4				Max delta T to basement	47	Gross Heated Floor Area	3500	
5	R VALUES			Average delta T to basement	23	Heating Degree Days	7554	
6	Wall R Value	52.00	1	Flat Ceiling R Value	40.00	Frostwall (heated) R value	1	
7	Floor over unbested space R Value	02.00	-	Skylight R Value	10.00	Basement Wall R Value	42.00	
8	Window R Value	5.00	N I	Opaque Door R Value	5.00	Linderslah R Value	20.00	
0	Slened Ceiling B Value	72.00		Class Deer B Value	5.00	Undersiab IX value	20.00	
10	Sloped Celling K Value	13.00	, 	Glass Door R value	5.00			
10	Floor over outdoors R value		_					
11	ELEVENT.	ADEA	411	Used and BTUM and				
12	ELEMENT	AREA	AU	Heat loss BTU/hour		14/-11	0004	
10	vvali	143	27.5	2201		vvaii	2201	
14	Floor over outdoors	2214	4 0.0	0	-	Window Observed and Winner	1856	
10	Window	110	23.2	1856		Sloped celling	2/62	
10	Sloped Celling	2520	34.5	2762		Basement (neated)	3/90	
10	Flat Gelling	0	0.0	0	-	Glass doors	83/6	
10	Skylight		0.0	0		Matilation	1677	
19	Class Deer	52	0.0	0276		ventilation	1290	
20	Glass Door	524	104.7	63/6			21956	
21	Pibor over basement	101	0.0	U				
22	Basement wall below grade	19	7		-			
2.3	basement wall below grade	1221	9					
24		DEDIMETER	-		-	-	997 19197 G 201	
25	Slah on grade (beated anasa)	PERIVIEIE		0		Desig	in Heat Loss by Con	nponent
20	Siab on grade (neated space)	201	0.0	2700		-		
28	INFILTRATION Volume	ACH 222	47.4	CEM average air leakage	10	9000		
20	INFILITATION VOIDINE	AGH 0.03	Equiv. AU	1677	19	8000		
30	Ventilation	CEM	21.0	1077	-	7000		
30	ventilation	61	16.2	1206	-	/000		
32		U.	10.2	1230		6000		
32	ALL Conduction to outdoors only	237	7			5000		
34	ALL Conduction to besement only	201)	Shell ft2	6243	4000		
25	ALL Total to outdoors	280	2	Blower door CEM50	330	3000		
26	Design Heat Less PTU/Hr	203	2	Electric use kWh/month	300	2000		
27	Design Heat Less, BTO/Hi	20102	-	Electric use, kWh/monut	3600	1000		
20	Design Heat Loss, KW	0.0	2	DHM use BTH/uses	2.05+00	1000		
20	Design neat Loss/Itz, BTU/HI/Itz	6.6)	DHW use, bit U/year	3.8E+08	0 + + - + - + - + - + - + - + - + -		
39	One of the state of DTUK see	5 405 103		DHW use. kwn/year	1127	- Nall Box	inno con	of the tor
40	Gross annual heat load, BTU/year	5.16E+07		lotal net thermal use, BTU/year	3.2E+07	WIN	Ace. ines	50° alto atilo
41	Net annual heat load, BTU/year	2.8E+07					ant Gr	os tri de
42	Boiler efficiency	80%					eme	
43	Net annual heat load, gais. oil/year	255				_	\$ ³⁵	-
44	Net annual heat load, kWh	8298	3					_
45	COP of heat pump	1	5	Iotal electric usage heat pump plus household	7494			
46	Net annual heat load, kWh, w/heat pump	2766	5	kW PV required for ZNEH	6.52			
47								
48								
49								
50								
	Heat Loss Calcs Take-off	s 🖌 Air leakag	e Basement-	ground loss / Monthly heat loss / Solar heat gains	DHW +		*******	

Inputs to the energy model

•	Annual heating degree days 65F	7554		
•	Design temperature	-15°F		
•	Floor area with conditioned basement	3400		
•	Shell area, ft2	6243		
•	Window/door area, ft2	568		
•	COP of ground source heat pump	3.0		
•	Predicted annual PV production, kWh	6800		
•	R-values: wall R-52 Roof R-73 basement wall R-40 basement floor R-25; windows and doors R-5.5			

• Design ACH, CFM50: 0.6 ACH, 330 CFM50

Envelope strategies

- Existing sheathing air barrier sealed with peel-and-stick tape
- Eaves cut off for AB continuity
- Ure thane foam stress skin panels on roof and walls - forms new over hang for the roof – 5-1/2 inch foam core
- Four inches of rigid foam over the existing slab, then Warmboard
- Basement (mostly finished) studded out, seven inches of closed cell spray foam
- Walls and roof framing have additional closed cell spray foam
- Thermotech windows and doors, triple glazed with two low-e layers
- Blower door results 4,000 CFM50 reduced to 330 CFM50

Systems strategies

- Renewaire EV130 ERV
- WaterFurnace water-water ground source heat pump (GSHP), vertical closed loop ground connection, radiant floor heat
- 80 sf solar DHW system, designed so collectors heat the 80 gallon electric tank first then the 120 gallon preheat tank
- 7.5 kW solar electric system
- Meters on GSHP, DHW back-up, and PV output

What to do with a masonry chimney

Details

Details

Flying in the SIPs

Deep Energy Retrofits - Marc Rosenbaum, PE

Fog test

Ground source heat pump

• WaterFurnace 2-1/2 ton water-to-water heat pump

- Vertical closed loop ground connection, with three 220 ft deep boreholes Environol antifreeze
- Loops are over-sized by about 10% and the flow is not turbulent, which allows a smaller pump
- Hydronic radiant floor heat using Warmboard integrated subfloor and tubing tracks
- Heat pump heats an 80 gallon tank which is the source for the radiant floors $-95^{\circ}F$ water will heat the house, allowing the GSHP to operate at high efficiency

Solar hot water system

- Anticipated intermittent but high occupancy
- Two 40 ft2 flat plate collectors
- 120 gallon solar tank is preheat for the 80 gallon electric water heater

• System controls allows the solar system to heat the electric water heater first, then heat the preheat tank, so both tanks can be heated by the sun, and 200 gallons can be waiting for a weekend onslaught of guests

• There is also a heat dump of fintube to control overheating when the house is unoccupied

• The system has had some reliability issues including a freeze-up

Deep Energy Retrofits - Marc Rosenbaum, PE1ary tank first, then solar tank

Metering

Meters are on the PV inverter output, the heat pump system input, and the DHW back-up input, as well as the utility meter. There is also a water meter on the incoming water to the DHW system.

Actual first year energy results

- GSHP 2334 kWh \bullet 536 kWh DHW back-up lacksquareAll other loads 2428 kWh Total used 5298 kWh 7030 kWh PV production lacksquare1732 kWh
- Net *exported* •

Deep Energy Retrofits - Marc Rosenbaum, PE

Many salvaged, FSC, and local materials

- Cedar shingles
- Hemlock timber frame
- Birch kitchen and maple built-ins
- Pine trim
- Salvaged antique pine and oak flooring
- and much more!

Observations on mechanicals and meters

• GSHP has been working very reliably and efficiently. Modest temperature lift between closed loops at about 40F and heat storage tank at 95F, coupled with attentive design to minimize pumping power, have yielded a system that appears to be operating above a COP of 3.

• Back-up heating of the DHW tank was using more energy than expected – this was tracked to incorrect wiring of the electric elements in the primary tank and an excessive setpoint. Once corrected, this energy dropped to close to zero. Several months later, it jumped up again – this was tracked to a freeze rupture in one of the collectors.